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ABSTRACT 

Computations of the electronic structure for molecules with more than 4 to 5 
atoms have been traditionally based on semi-empirical techniques. In this paper, 
a general computer program is described for computations of Self-Consistent Field- 
Molecular Orbital wave functions for molecules of any geometry and with a large 
number of nuclei and electrons. The molecular orbitals are linear expansions of sym- 
metry-adapted functions; the latter are linear combinations of so-called “contracted 
Gaussians.” The “contracted Gaussian set” is a linear expansion of standard gaus- 
sian functions, with expansion coefficients obtained from atomic computation with 
Gaussian set. The use of “contracted Gaussians” decreases drastically the number 
of matrix elements over symmetry orbitals, and makes the size of the “contracted 
Gaussian set” comparable with the size of a Slater-type (exponential) basis set. 
Special provisions are included in the program for the elimination or approximation, 
or both, of integrals smaller than a preassigned threshold. With these innovations over 
traditional computations with standard Gaussian function, it is quite feasible to 
compute large molecular systems. 

The computer program, written as a preliminary version for the IBM 7094 com- 
puter (and now in process of conversion for the IBM System 360), can handle a maxi- 
mum of 800 Gaussian functions distributed on 50 centers. Gaussian functions are 
restricted to s, p, d, and f type. In order to gain computer speed, s and p functions 
are computed with special formulas given in the Appendix. 

Average computational time for 4 center integrals over s Gaussian (uncontracted) 
functions is 0.6 milliseconds. This time increases for p type approximately to 2.6 milli- 
seconds. For many-center integrals involving d and f  functions, the computing time 
is rather large, about 25 and 50 milliseconds, respectively. The computational time 

’ Presently Visiting Professorial Lecturer, Department of Chemistry, University of Chicago 
(address: Department of Physics, LMSS). 

223 



224 CLEMENT1 AND DAVIS 

here quoted is somewhat higher than the time needed in standard computations, since 
no integral, however small, has been neglected or approximated in the time quoted 
above. 

The program has been used for problems involving no more than 44 x IO6 million 
twoelectron integrals. Larger computations can be done with our present program; 
however, one should consider the use of computers possibly with faster C.P.U. 
and certainly with larger core memory than the IBM 7094-Mod. I. 

From our preliminary computations, and taking into account both the structure 
and limits of our present version of the program as well as newly announced high-speed 
computer specifications, we feel confident in stating that within the next 2 to 4 years 
“a priori” computations for molecules with about 100-150 electrons and 5-20 atoms 
will be considered “routine” effort in theoretical chemistry. 

I. INTRODUCTION 

Attempts to construct theoretically the electronic structure of molecular 
systems are nearly as old as the Schriidinger equation. Since the beginning of 
quantum chemistry, two approaches have predominated in the field, namely, 
the valence bond theory [I] and the molecular orbital theory [2], The search for 
new approximations to the Schrodinger equation continues. Presently the use 
of higher-order perturbation is being actively reconsidered, for example, at the 
University of Wisconsin [3] and Uppsala [4]. Well-known many-body formalisms 
like those of Brueckner [5] and Bethe-Goldstone [6] are readapted and quantita- 
tively tested for atomic systems (see, i.e., Kelly [7], Nesbet [8], and Sinani;glu [9]). 

Parallel to this search for new techniques, at present mainly concerned with 
the electronic correlation energy of light atoms, there has been serious effort 
in the numerical analysis and large-scale programming, necessary to quantitatively 
verify the accuracy of theoretical schemes. Since the elegant review by Roo- 
thaan [lo] of the molecular orbital self-consistent field technique, it was realized 
that a “bottleneck” of quantum chemistry is the numerical intricacy of the prob- 
lem, in particular of many-center integrals [ll]. 

With the advent of computers, a rapid growth was experienced and a first 
set of numerical successes was obtained [12]. Due to the numerical complexity 
of the problem, however, the field was polarized in two directions; one was 
aimed at exact (ub initio) computations and was by necessity restricted to systems 
with very few electrons; the other was aimed directly at large molecular systems 
and was by necessity restricted to the use of semi-empirical or frankly totally em- 
pirical models. By 1959 this division was so marked as to be formally christened 
by Coulson [13]. 

It is the aim of this paper to give evidence that such a distinction should dis- 
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appear in the near future, at least for molecules with about one or two dozens 
of atoms. Admittedly, this is a very modest size if one considers macromolecules; 
however, the majority of molecules are built up from molecular fragments ap- 
proximately of the size we can now compute. In the following we shall report on 
the numerical techniques underlying a new molecular program written for the 
IBM 7094. The recent announcement of computers superior both in core size 
and logic speed to the IBM 7094 gives additional support to our optimism on 
the feasibility of rigorous computation of the electronic structure of large mole- 
cules. The method which we have adopted is the molecular orbital, self-consistent 
field method [14] with Gaussian-type functions [15]. 

II. GENERAL OUTLINE OF THE PROBLEM 

As an atomic orbital (AO) represents the density of an electron in an atom, so 
do the molecular orbitals (MO) in molecules. As the Hartree-Fock technique [16] 
constructs optimal AO’s, so the matrix Hartree-Fock [14] techniques construct 
optimal MO’s for a given basis set. The MO’s are obtained as linear combination 
of functions centered at the atomic nucleus of molecules. These functions, 
however, are of Gaussian form [13]. 

The Hamiltonian for the problem is 

(2.1) 

The first term is the kinetic operator for the ith electron, the second term is the 
potential between the ith electron and the nuclear charge 2 on center a, the third 
term is the electron-electron potential between the ith and jth electrons, and the 
last term is the nuclear potential with 2, and zb the nuclear charges (assumed 
point charges) and R,, the internuclear distance. 

The first and second term are subsequantly referred to as the one-electron 
hamiltonian, the second is referred to as the two-electron hamiltonian, and the 
last term is clearly a constant for a given geometrical configuration. Atomic units 
are used in this paper. 

The wave function Y for the problem is the standard antisymmetrized product 
(Pauli principle) of spin-orbitals. Since the hamiltonian (2.1) is spin-independent, 
the spin-orbitals are a simple product of a spin function and an orbital (spatial) 
function. 

The orbitals are obtained by solving the Hartree-Fock equations (self-consistent 
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field, SCF, equations), which are approximate solutions to the hamiltonian (2.1). 
When the wave function is obtained, the energy is given by the standard relation 

For a given molecular system, a given geometrical configuration and a given 
electronic configuration and state, each molecular orbital, CD, is characterized by 
an index 1, which specifies the irreducible representation of the point group for 
the molecule in consideration, and by a second index i which identifies the ith MO 
of the Ath irreducible representation. Since we have selected to work with real 
functions, an n-degenerate representation is described by a n dimensional set of 
real orbitals. 

The MO’s are expanded in terms of symmetry adapted functions. These, in 
general, are the smallest linear combination of atomic functions, which transform 
as an irreducible representation of the molecular point group. Therefore, if we 
designate by p the symmetry-adapted functions and by x the Gaussian functions, 
a symmetry function and a molecular orbital are expanded as 

v,aq = F 4qrxr (2.3) 

(2.4) 

The dAqr are coefficients selected as to insure that the x7 transform properly. 
The cAip are the expansion coefficients for the molecular orbital @Ai and are vari- 
ationally obtained in the self-consistent field technique. The expansion coeffi- 
cients Cj,iq give rise to a vector cl.i . 

The molecular orbitals, Q’s, are orthogonal by definition when they belong to 
different irreducible representation. In addition, the set of molecular orbitals of a 
given irreducible representation are constrained to be orthogonal among them- 
selves. The symmetry-adapted functions, p, are by construction orthogonal to 
each other when they belong to different irreducible representations. 

In our program, there is a hierarchy of functions. The lowest type are standard 
Gaussian functions, 2, centered in general, but not necessarily, on one of the 
atomic nuclei. The second are linear combinations of Gaussian, on one center the 
“contracted Gaussian set,” where the linear expansion coefficients are taken from 
educated guesses, based on the atomic orbital expansion coefficients of atomic 
computations (see Section IV). The choice of uncontracted (single) Gaussian or 
contracted (linear combination) Gaussian set is an input option. The third set 
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of functions, are the symmetry functions; these are expanded either in terms of 
uncontracted Gaussian functions or in terms of the contracted Gaussian set, 
or in terms of both, free and contracted. Finally, the last set of functions are the 
molecular orbitals, clearly variational combinations of symmetry-adapted func- 
tions. 

It should be noted that symmetry functions for a given molecule can be con- 
structed in a variety of ways. One can use complex or real symmetry functions; 
we choose the latter because of ease in programming. Since the symmetry orbital 
expansion coefficients dAqr are input parameters, we have the freedom to use the 
smallest possible set of Gaussian functions in constructing the pAp or larger sets. 
For example, if one is interested in computing molecular interaction, with the 
interacting molecules at such distances that only dipole-dipole type of interactions 
is important, then one might select the option to use the molecular orbitals of 
previously computed separated molecules as symmetry-adapted functions for 
the system of interacting molecules. 

In the following, the term “Gaussian set” will be used to indicate both the 
contracted and uncontracted Gaussian functions, unless otherwise specified; 
and the term “symmetry functions” will be used both for minimal symmetry 
combinations or more complex ones, unless otherwise specified. 

With this in mind, let us indicate with S,,, the orthogonality matrix element 

SA,, = cPi.p I PAa) = (pli.* I Y&l) (2.5) 

which can be considered the element of a real symmetryc matrix S, , the orthogo- 
nality matrix. Then the orthogonality constraints for the molecular orbitals of a 
given irreducible representation are 

c;i s, c,j = Bij (2.6) 

The vectors c, subjected to the constraint (2.6), define the following density ma- 
trices 

Di, = Ni>. GA 4 (2.7a) 

D,, = c’ Di, i 
(2.7b) 

DoI, = c“ Di, (2.7~) 
z 

D,, = D,A + Do,, (2.7d) 

where Nil is the occupation numbers, and the subscripts c, o, and T refer to closed, 
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open, and total, respectively. Di, is the density matrix for the ith molecular 
orbital of the Ith irreducible representation, and D,, and Doi are the closed and 
open shell density matrices. The 2’ and x” summation are over closed or open 
orbitals, respectively. 

The expansion coefficients c, are obtained by solving the SCF equations 

F,c = E SC (2.8) 

Foe = E SC (2.9) 

where the, E’S are the eigenvalues (orbital energies), c’s are the eigenvectors 
(expansion coefficient), and F, and F,. are the Hartree-Fock hamiltonians, defined 
respectively as 

where Ris the one electron part of the total hamiltonian (2.1); and.!? and @ are 
the closed and open shell supermatrices, respectively, which represent the electron- 
electron interaction of closed-closed and closed-open, and open-open shells. 
Details on the constructions of these supermatrices can be obtained, for example, 
from Roothaan and Bagus’ work [14]. 

It has been pointed out [14] that the eigenvalue problem (2.8) and (2.9) can be 
solved directly without transforming it into the problem 

F,‘c = E c (2.12) 

F,‘c = E c (2.13) 

where the overlap matrix S of (2.10) and (2.11) are transformed into unit matrices. 
This is certainly the case for the lowest configuration of atomic systems. There a 
“somewhat decent approximation to the vector c,” given as input, is sufficient 
in order to successfully use “single-vector techniques” like the one proposed by 
Sack [14]. However, in molecular cases, especially with Gaussian sets, there are 
new difficulties not present in atomic systems. For example, it is clear that in a 
hydrocarbon there is a large number of nearly degenerate orbitals. This is simply 
the result of the fact that the splitting of the orbital levels of equivalent atoms from 
an exact degenerate set (no interaction) to a nearly degenerate set (molecular 
interaction) is in general small. Preliminary numerical experimentation on H, 
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indicates that the “input trial vectors should be as good as to have two to three 

significant figure accuracy, compared to the final vectors.” We have therefore 

used Jacobi diagonalization followed by Sack single-vector diagonalization. 
(This approach was used on previous atomic programs from the University of 

Chicago.) The test on whether to continue with the Jacobi process or to initiate 

the single-vector diagonalization process is based on the two-electron energy 

convergency. The total energy is given by the relation 

E = R+D, t_ +DT,+9Drr - $0,’ @Do + EN = E1 + E, + EN (2.14) 

where the first term is the one-electron energy, the second and third are the two- 

electron energies, and Ex is the nuclear-nuclear repulsion energy. Let us analyze 

the convergency of El , E, , and E for the specific case of the Ne atom (Table I). 

TABLE I 

CONVERGENCE OF THE ONE-ELECTRON, TWO-ELECTRON, AND TOTAL ENERGY IN THE NE ATOM 

E2 E Cycle No. 

-148.11154 30.115002 -118.65654 2 

-193.71428 67.981011 -125.73327 3 

-171.84472 44.507845 -127.33687 4 

-186.95863 58.734003 -128.22462 5 

-179.91135 51.464291 -128.45506 6 

-183.81116 55.289364 -128.52179 7 

-181.93076 53.392240 -128.53830 8 

-182.41809 53.874465 -128.54362 10 

-182.53927 53.995312 -128.54396 12 

-182.56965 54.025668 -128.54398 14 

-182.57924 54.035258 -128.54398 18 

-182.57981 54.035821 -128.54398 22 

-182.57988 54.035900 -128.54398 26 

-182.57987 54.035883 -128.54398 30 

-182.57986 54.035883 -128.54398 34 

The last column gives the number of times we have solved the SCF equations 
(both iterative and extrapolation techniques are used). From Table I, one can 

see that, in the specific case in question, the total energy E has converged in 12 
cycles, the one-electron energy has converged in 22 cycles, and the two-electron 

energy has converged in 30 cycles. Analysis on the density matrix indicates that 
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seven-figure convergency on E, guarantees, in general, 6-7 figure convergency 
on the density matrix. 

When this level of convergency is obtained, one can optimally continue with 
a single-vector diagonalization routine. This is done mostly to ensure convergency 
on the virtual (unoccupied) orbitals, since the El or E, do not guarantee any 
convergency on these. There is an additional program option which allows the 
program user to specify a given number of additional Jacobi passes after conver- 
gency on E, . This option has been inserted in the program after having experienced 
that the “trial” vector supplied by Jacobi diagonalization, even after full conver- 
gency on Et , might sometimes not be a “decent” guess of the virtual orbitals for 
the Sack single-vector diagonalization. 

III. GENERAL FORMULAS FOR THE MATRIX ELEMENTS 

In this section we give the analytical solutions for the matrix elements needed 
in the SCF computation. No derivations will be given here since these are par- 
tially available in several publications. The reader is referred to the works of 
Boys [15], Shavitt [17], Harrison [18], Krauss [21], Harris [20], and Wright [19] 
for additional information. The following analytical solutions were derived by 
Huzinaga [22]. 

The uncontracted Gaussian function, x, on a center A is defined as 

~6% a, 1, m, n> = (4 a, 1, m, n) 
= (x - A#(y - kQm(z - A,)nexp(- @r.j) 

= xjyTzzexp(- czri) . 
(3.1) 

In defining the integrals over Gaussian functions, the following auxiliary functions 
are used: 

f& m, a, b) = isz$cmj ( f ) ( p i) az-i bn+i-j (3.2) 

~‘,.W = J; u2” exp(- t~~)dz4 (t > 0, v = 0, 1, 2 . . . ) . (3.3) 

This is a form of the Incomplete Gamma Function and is evaluated in the program, 
depending on the range of the argument t, by asymptotic expansions, recursion 
formulas, or tabular interpolations. 
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The normalization factor for the Gaussian function (3.1) is: 

Ncx = 
3’3(21- l)!! (2m - l)!! (2n - l)!! 

22&wn+~)&+m+n) (3.4) 

In the formulas which follow, all coordinate systems on various centers are par- 
allel and right-handed. 

The Overlap Integral 

(3.5) 

where 

and &, , & are similarly defined in terms of the corresponding exponents and 
components in the y- and z-directions. 

The convention RIRz = 2 - z2 applies throughout, and the point P appearing 
in (3.5) and the following formulas is the center of the new Gaussian function, 
the product of the Gaussians on A and B: 

Pi = a,4 + a24 

a1 + % 
i = x, y, 2 . 

The Kinetic Integral 

<A, 1 al, I ,ml, nl I - iv2 I 4 a2 , l2 , m2 , n2> 

= NlN2b2{W2 + m2 + n2) + 3) (A, al, 11, ml, nl I B, a2, 12, m2n2> 

- 2~r,~{(A, (Y 1, 4, ml, nl I B, ~2, l2 + 2, m2, n2> 

+ (4~ 1 , ll , ml , n, I B, a2 ,12 , m2 + 2, n2> 

+ (A, a1 ,11, ml , nl I R a2 y 1,) m2, n2 + 2)) 

- !z{~~G - 1) (A, a1 ,I1 , ml , nl I 4 a2 , l2 - 2, m2 , n2> 

+ m2(m2 - 1) (A, a1 ,I1 , ml , nl I 4 a2 , 12, m2 - 2, n2> 

+ n2h2 - 1) (4 01 1,~~,ml,nlIB,~2,~2,m2,n,-2)}1 

(3.6) 

(3.7) 
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The Nuclear Attraction Integral 

(3.8) 

AA,,, > Aw,w are similarly defined in terms of the y- and z-components. 
The summations in (3.8) are over the following ranges: 

i =O+l,+l, j=O-+ml+m, k =O-+n,+n, 

r = 0 + [i/2] s = 0 + [j/2] t = 0 + [k/2] 

u=O+[i-2r)/2] v=O+[(j-2s)/2] w=O-[(k-2t)/2]. 

Here, as throughout this paper, the notation [k] is used to denote the largest 
integer _( k. 

The Electron Repulsion Integral 

((A, a 1 ,4 , ml , nd, (4 a2 ,I, , ma , na> CC, aa, 4, ma, n,),(D,+ ,4, ma, n,> 
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where : 

y1= a1 + "2 ; Y2 = a3 + ff4 ; 

Qi = a3Ci + "4Di 

a3 + a4 
i=x,y, z 

v = i, + i, + ji + j, + kl + k, - 2(r, + r2 + s1 + s2 + t, i t2> - u - v - w 

Bil,iZ,r1,r2.u = Bil,ie,r1,r2.u (I 1 4 13 2 9 - zz 3 4 ,P, 3 ~lll,,l,, G 3 4, Q,, ~2) 

= (-)%J~I, 12, PA, > pg,lfi$, , 14, Qc,, Qo,> 

X 
i,!i,! Ylrvzr2 (28 2(r,+g) 

m(46)il+iv,!r2!(il - 2r,)!(i, - 2r,)! 

x Pl + 12 . - 2r1 - 2~2]!(-)4p~Zkl+ia-2(71+7*+U)BU 

u![i, + i2 - 2(rl + r2 + u)]! 

Bjt,j2,w2,t and BW,,tl,t2,w are similarly defined in terms of the y- and z-compo- 
nents, respectively. 

The summations in 3.10 are over the following ranges: 

il = 0 II + 1, 

i2 = 0 l3 + I, 

rl = 0 [i,/2] 

r2 = 0 [i.JZ] 

and similarly for the indices of the summa- 
tions over the y- and z-components. 

u =o 
[ 

il + i2 ---r -r 
2 1 2 II 

IV. CONTRACTION 

In an SCF computation, the number of two-electron integrals (one center or 
many centers) is proportional to the fourth power of the numbers of atomic 
functions. To adequately describe an atom of the first period with s andp electrons, 
one needs 9-12 s-type Gaussian functions and 5-6 p-type Gaussian functions. 
Therefore such an atom, when in a molecule, will be described by about 30 
Gaussian functions (10 of s-type, 5 of p&ype, 5 of p,-type, 5 of p,-type, plus 
some d- andf-type). The corresponding number of Slater-type functions is about 
20 (4-5 of s-type, 3 of pZ-type, 3 of p,-type, 3 of p,-type, plus some d- and f-type). 
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A relatively simple molecule like C2H, requires about 90 Gaussian functions, 
and this brings about the need to compute about 7 million integrals over Gaussian 
functions. These integrals are then transformed into integrals over symmetry- 
adapted functions; no matter what transformation technique is used, the compu- 
tational time required for the transformation is proportional to the size of the in- 
tegral list. Availability of large core memory certainly ameliorates the situation 
but does not eliminate the complexity of the transformation. Alternatively, one 
could compute directly the integrals over the symmetry-adapted functions, 
therefore eliminating the need for the transformations. However, in this case one 
will either compute a redundant number of integrals over the Gaussian function, 
or carry a very long “integral request” list. 

These difficulties can be overcome by replacing the individual Gaussians with 
some appropriate linear combination of Gaussian such as to reduce and therefore 
“contract” the number of stored integrals. This has been suggested for large mo- 
lecular computations some time ago by one of us [23]. Now we have implemented 
this suggestion, and from our preliminary results it appears that one can finally 
compute rather accurately large molecular systems. 

Two possible schemes are available for contracting the original basis set. On one 
hand one could use as the contracted set the atomic orbitals of the separated atom. 
In this case one would start with as many contracted functions as the orbitals 
of the component atoms in their ground state. Computationally, one would 
construct the integrals over the atomic orbitals, making use of the atomic expan- 
sion coefficients. The drawback of this scheme is that the atomic orbitals are in 
general poor representations for molecular functions, except for the inner shells. 

A second possibility is to analyze the Gaussian functions of the atomic orbitals 
and make appropriate linear combinations of the atomic functions. For an illustra- 
tion of this technique, let us consider the Ne(iS) atom. We shall compare the 
result of a standard, but optimal, basis set obtained by Huzinaga [22] with the 
results obtained with a “contracted set.” Huzinaga’s set consists of 11 Gaussian 
functions of s-type, and 7 Gaussian functions of p-type. We shall designate the 
s-function as x1 . . . to xl1 , and the 7 p-functions as xlZ . . - to xle . The orbital 
exponents and expansion coefficients of Huzinaga’s computation are given in 
Table II. 

The total energy is - 128.5447 a.u. By simply inspecting the orbital exponents 
and the expansion coefficients, it is clear that (a) a number of Gaussian are needed 
only in order to represent the 1s cusp (the very high orbital exponents), and (b) 
that several Gaussians belong only to the 2s orbital, and the small coefficient in 
the 1s is present for orthogonality requirements. Therefore, the set of 18 Gaussians 
can be contracted to a smaller set, a “contracted” set. 
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TABLE II 

NE ATOM: UNCONTRACTED GAUSSIAN SET, ORBITAL ENERGIES, AND EXPANSION COEFFICIENTS 
(TOTAL ENERGY, - 128.5447 a.u.) 

Orbital 
exponent 

IS 2s 
Orbital Orbital 

Orbital 
exponent 

2P 
Orbital 

Xl 47870.2 .00021 -.00005 

XI 7385.83 .00162 -.00038 

xs 1660.18 .00863 -.00206 

x4 460.539 .03617 -.00856 

X6 146.038 .12134 -.03097 

%a 50.4137 .30702 -.08388 

x7 18.7165 .43944 -.17194 

X8 7.39702 .22518 --.10947 

x0 2.6768 .01554 .37643 

Xl0 .775195 -.00230 .57102 

x11 .29176 .00095 .20449 

& -32.772 -1.9300 

XlS 129.802 .00426 

Xl4 30.4192 .03061 

x14 9.62151 .11927 

Xl5 3.54645 .26912 

Xl4 1.41435 .35733 

x17 .578893 .33183 

Xl8 .216044 .16084 

& - .84999 

For example, we could use the following set, and re-perform an SCF compu- 
tation with it: 

x1’ = .00021 x1 + .00162 xz 

x9’ = .00863 x9 + .03617 x4 

x9’ = .12194 xs + .30702 xa 

x4’ = .43944 x, + .22518 x9 

xs’ = x9 

x9’ = .57102 xl0 + .20449 xl1 

x,’ = .00426 x,9 + .03061 xl9 

x8’ = .11927 xl4 + .26912 xl5 

x9’ = .35733 xl9 + .33183 x1, 

x&l = X18. 

Table III shows the results for orbital energies, total energies, and the new ex- 
pansion coefficients. 
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TABLE III 

CONTRACTED SET FOR NE ATOM 

IS 
Orbital 

2s 
Orbital 

Xl .001747 

x2’ .043015 

X3 .41259 

X4 .647292 

X5 .0145941 

X6 - .000715 

- .000416 X7 

- .010125 X.3 

-.107915 29 

- .267860 Xl0 

.363564 E 

.757529 

2P 
Orbital 

.033118 

.366407 

.651301 

.I60667 

- .85091 

E -32.7711 -1.93016 E = - 128.5440 

The total energy for the contracted set, x’, is - 128.5440. Let us contract even 
more and use the following contracted set for a new SCF computation: 

x;’ = .00021 x1 + .00162 x2 + .00863 x3 

xi’ = .03617 x4 + .I2194 x5 + .307012 x6 

x;’ = .43944 x7 + .22518 x8 

x;’ = .37643 xs + .57102 xl0 + .20443 xl1 

x;’ = .00426 ~12 + .03061 xl3 + .11927 xl4 

x;’ = .26912 xl5 + .35733 xl6 

x;’ = .16084x1, + .33183 xls, 

The recomputed orbital energies are - 32.76031 for Is, - 1.92977 for 2s, and 
- .848104 for 2p; and the total energy is - 128.5412 a.u. 

Table IV summarizes the above analysis and gives, the total energies, the or- 
bital energies, the number of two-electron integrals for each type of set, and the 
equivalent number of two-electron integrals (the 2p orbitals were considered to 
be subdivided in 2p, , 2p,, 2p,, as they are in most molecules). 

In Table IV, we have reported in the last column the number of elements in 
the 9 matrix. It is noted that the number of integrals is much larger, since (a) 
we compute all the distinct and possible integrals which can be derived from the 
basis set, (b) the.9 supermatrix contains both coulomb and exchange integrals. 

A final example of the usefulness of the contracted set is reported for the N, 



ELECTRONIC STRUCTURE OF LARGE MOLECULAR SYSTEMS 237 

TABLE IV 

COMPARISON OF CONTRACTED AND UNCONTRACTED SETS 

Type Total energy 41s) 42P) 
No. of s No. ofp No. of.9 

basis basis elements 

x set -128.5447 -32.712 -1.9300 -.84999 11 7,797 11325 

x’ set -128.54398 -32.771 -1.9301 -.85091 6 4,4,4 861 

x” set -128.54114 -32.700 -1.9298 -.84810 4 3,3,3 406 

molecule. Again we started with Huzinzga’s N(3P) atomic computation [24] with 
11 s-type Gaussian and 7 p-type Gaussians. This set was contracted to 4 functions 
of s-type and 2 of p-type. The computed total energy is - 108.81163 a.u. This 
contracted set of 4 contracted s-type Gaussian and 2 contracted Gaussian of 
2p-type is equal in number to a double-zeta Slater-type set [23]. However, a Slater 
double-zeta-type set gives an energy of - 108.79508 a.u., or 0.01655 a.u. higher 
than the Gaussian contracted set. 

Before concluding our remarks on the contraction, we wish to point out that 
one can optimize the contracted set by performing, for a given selected contracted 
set, a series of atomic computations whereby the contraction coefficients are opti- 
mized (instead of the orbital exponents as usual). This first requires an optimal 
uncontracted basis set and then new optimization on the contraction coefficients. 
Work is in progress for the programming of this problem. 

From the above results on the Ne atom and N, molecule where direct compa- 
rison with Slater-type functions can be made, and from computations on H,O, 
C,H, , and H, , we have performed, we tentatively conclude that the basis set with 
more than 150-200 functions must necessarily resort to some “contraction” 
technique, otherwise the handling of integrals becomes a very expensive process 
in terms of computational time. 

V. PROGRAM ORGANIZATION 

In this section we shall briefly outline the organization of the program [25]. 
There are three logically distinct sections in the program. 

The jirst is computation of the integrals either over contracted or uncon- 
tracted Gaussian function, or a mixture of both. For integrals involving s and 
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p Gaussians, special time-saving function routines have been obtained (see 
Appendix). For integrals with a d orf function, the general formulas (see Section 
IV) are used. The computation is over all the possible combinations of Gaussian 
functions. 

It is noted that we compute more integrals than needed for the SCF computa- 
tions. This is done because we are in the process of including a superposition of 
configuration routines in our program. There are a variety of techniques which 
allow one to obtain the integrals in a faster way. As it was pointed out by one of 
us [23], many integrals are exceedingly small and could be safely neglected; 
others are small and could be approximated. Provision for such techniques are 
included in the program, However, we shall defer any additional discussion on 
this point until we know how safe these simplifications are. It is noted in this 
regard that, in a computation with lo-20 million nonzero integrals, most likely 
more than 20-30x of these could be neglected or approximated. But it will take 
some very careful analysis to ensure that the approximated computation will 
represent long-range effects as accurately as the full computation with no approxi- 
mation. 

The second part of the program is the construction of the supermatrices needed 
in SCF computations. This is a transformation from integrals over Gaussian 
functions to integrals over symmetry orbitals. This section of the program is 
logically straightforward, although time-consuming. 

The third part of the program is the SCF proper. Some of the details of this 
program section have been discussed previously (Section II). 

In the coding process are the superposition configuration and a number of 
routines dealing with expectation values other than the energy. 

A maximum number of 75 orbitals is allowed in the present version (this re- 
striction will be removed in the IBM-360 version of the processes). A maximum 
of 800 uncontracted functions, centered on 50 different positions (of arbitrary 
geometry), is allowed. The maximum number of simple Gaussian functions in a 
contracted function is eight. This number is more than sufficient, according to 
our still limited experience. 

VI. CONCLUSIONS 

Preliminary computations [26] on HzO, Nz , C,H, (eclipsed, staggered, 20’ 
rotation, 40’ rotation), H, , and C,NH, indicate that the program can be readily 
used for large computations [27]. The large core of the IBM System 360 will 
increase substantially the computational speed of the transformation section and 
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of the SCF section of the program. Accordingly, the program is in the process 
of being rewritten for the IBM System 360. 

For very large systems with several hundreds of Gaussian functions, one will 
have to resort to the use of approximation in the integrals, especially the small 
ones. 
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APPENDIX 

Special Formulas for the Matrix Elements of s- and p-Type. 

In the formulas of this section, the subscripts i, j, k, and I define the axis of a 
p-type orbital function, and each is to be replaced with the value x or y or z as 
appropriate. 

The Overlap Integral 

SiO (a, b) = (Pi, 1 S,) = -f& (Ai - Bi) SoO(a, b) 

S”j (a, b) = (S, j Pjb) = --& (Aj - Bi) SoO(a, b) 

sii (a, b) = (Pia 1 Pjt,) = 
C 

2(a \ b) 6ij - 
(a ptbb)2 

(Ai --B&Aj _Bj)k(a, b). 

Here, as throughout this section, dij is the Kronecker delta. 

The Kinetic Integral 

We first define a set of functions: 

KoO (a, b) = -$$$- - 
2a2b2 
(a + b)2 AB2 
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Ki” (a, 6) = - &” (Ai - Bi) 

K”i (a, b) = (u2~z;)2 (4 - 4) 

Kij (a, b) = 

In terms of these K-functions and the S-functions given above, the kinetic inte- 
grals are defined as follows: 

To0 (a, b) = (S, I - 40 1 S,) = K”“(u, b)S”“(u, b) 

T’” (u, b) = (Pia 1 - $A / Sb) = K”(u, b)Soo(~y b) + KOO(U, b)Sio(ay b) 

T”j(U, b) = (Sa 1 - &O / Pja) = K"j(U,b)P(U,b) + K"'(U,b)S"(U, b) 

T’j’ (u, b) = (Pi, - $0 Pjb) = Kii(U, b)S”“(u, b) + KiO(U, b)S”(u, b) 

+ K”$, b)Sio(u, b) + Koo(u, b)S+, b). 

The Nuclear Attraction Integral 

Again we define a set of intermediate functions. These use the Incomplete Gamma 
Function defined in (3.4). In each case the argument, t = (a + b) z2, is used 
where P is defined as in (3.7): 

Lo” (c; a, b) = F,(t) 

LiO (c; U, b) = Loi(c; U, b) = (Ci - Pi)Fi(t) 

LiJ’ (C; U, b) = (Pi - Ci) (Pj - Cj)I;z(t) - 2(u \ b) pi& * 

The nuclear attraction integrals may now be defined: 

VoO (a, b) = (S, 
I I 
+ S,J = 0 x SoO(u, b)Loo(c; a, b) 

0 

= 0 ~{Sio(u, b)Loo(c; a, b) + SoO(u, b)Lio(c; a, b)) 
e 

J’oj (a, 6) = (S, 
I I 
+ Pjb) = 8 ~{S”j(u, b)LOO(c; U, b) + Soo(u, b)LOi(c; U, b)} 

c 

W’ (a, b) = {Pi, $- Pjb) = 0 ~{S@(U, b)L”O(c; U, 6) + SiO(u, b)LOj(c; U, b) 
I I c 

+ So+, b)LiO(c; a, b) + Soo(u, b)Lij(c; a, b)} 
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where 

Note that every additive term of these formulas contains either explicitly or im- 
plicitly the term SoO(u, b). Thus all normalization factors are included by the def- 
inition of this term. This applies also to the formulas for the kinetic integrals. 

The Electron Repulsion Integral 

In this case also the special formulas are simplified by first defining a set of 
intermediate functions. In these formulas the centers P and Q are defined as in 
Section III. The argument of the Incomplete Gamma Function in these formulas is 

(a + b) cc + 4 pez . 
t= (a+b$c$d) 

To abbreviate these formulas, the following conventions are used throughout: 

S1 = a + b; S, = c + d; S, = S1 + S, = a + b + c + d. 

The intermediate functions are defined as: 

Go”““(t) = r;o(t) 

Giooo(t) = Goioo(t) = + (Pi - QJFI(t) 
4 

@O(t) = GOooi(t) = + (Pi - Qi)FI(t) 
4 

@O,(t) -I- + {+ (Pi - Qi) (Pj - Q,)Fz(t) 
4 

Gooiqt) = 3 {.g (Pi - Qd (Pj - Qj)Fdt> 
4 

GioJ’o(t) = Goijo(t) = Goid = @d(t) 

(Pi - Qi) (Pj - Qj)Ft(t) - + 6i.j F,(t)} 

@‘h(t) = @ok(t) = + F(Pg - QJ (Pj - Qj) (P/s - QdFdf) 

- $[dij(Pk - Qk) + d:(P, - Qj> + ‘jk(Pi - Q,)lG(t,) 



@k’(t) = et.- 
s42 { 

%$t U’iQi> (Pj - Qj> (Pk - Q,d U’z - QzP’c&> 

- ; F [&j(pk - Qk) (pz - Qd + hk(pj - Qj> (pl - QJ 
4 

+ h,(pj - Qj> (Pk - Qk> + &kcpi - Qd (f’~ - Qz) 

+ djdpi - Qd (pk - Qk> + 6kl(pi - Qi) (pj - QjWW) 

f !C dijakl + ai/,Jjl + ‘Ji$jkIF2(f) 
I 

* 

The electron repulsion integrals can now be defined in terms of the G-functions 
and the S-functions, normalization factors again being included by the explicit 
or implicit use of the product Soo(a, b)Soo(c, d). An abbreviated notation will be 
introduced whose meaning will be apparent to the reader. The multiplicative 
term fl appearing in each formula is defined as: 

Sps~ II2 
il=2 ---$j- 

( 1 4 

(S, S, 1 SC S,) = (SOS, 1 -j- 1 SC&> = A So”@, b)Soo(c, d)GoooO(t) 
I ‘12 I = A so0 so0 Go000 

llfi cd 

SC S,) = A {Sg Sz Go”“” + S$ Sz GhO) 

PkeSd) = A {f$&[Ss Goooo + 27% Gook + S;;[S;$ Gioko+ Ss Giooo] } 

SC &) = A {sf$, sz Goooo + @b sz Gojo 

+ $x% sz Gi000 + sg ss @ho} 

PkcSd) = A (Sf&[Ss Goooo + sg$ Gooko] + p&b[sfJ Gojo + ,$z Gojko] 

+ S$[Sf$ Gim + S’;; Gaoko] + Sg[S$ Gijoo + 5’3 GijkoJ) 

<piaPjb 1 pkepld) = A {f+$,[S$ Gow” + S$$ Goool + S% Gook + S:: Gook 

’ El + XW, G ojoo + ~2 GOjo + ,yoJ Gojk* + sz G*M] 

+ S$$[S$$ Giooo + s$ Giool + ss @do + ,Q Gi*ktj 

+ sg[skJ Qjoo + ,y% @jojo! + so& @k* + ,Q Gijkl} . 



ELECTRONIC STRUCTURE OF LARGE MOLECULAR SYSTEMS 243 

REFERENCES 

1. See for example W. HEITLER and F. LONDON, Z. Physik 44,455 (1927); J. C. SLATER, J. Chem. 
Phys. 43, Sll (1965), and any textbook on quantum chemistry. 

2. See for example R. S. MULLIKEN, Phys. Rev. 32, 186 (1928); 32, 761 (1928); 41, 49 (1932); 
J. Chim. Phys. 46, 497 (1949); 46, 675 (1949) etc.; F. HUND, Z. Physik 51, 753 (1928); 73, 
1 (1931). 

3. See for example J. 0. HIRSCHFELDER, W. B. BROWN, and S. T. EPSTEIN, in “Advances in 
Quantum Chemistry” (Per-Olov Lowdin, ed.), Vol. I. Academic Press, New York (1964). 

4. P. 0. L~WDIN, J. Chem. Phys. 43, S175 (1965). 

5. K. A. BRUCKNER, Phys. Rev. 96, 508 (1954); 97, 1353 (1955); 100, 36 (1955), and other 
papers by Bruckner and Levinson, and Eden, Francis, and Sawada in Phys. Rev. 

6. J. GOLDSTONE, Proc. Roy. Sot. (London), Ser. A 239,267 (1957). See, in addition, K. KUMAR, 
“Perturbation Theory and the Nuclear Many Body Problem”, Chapter II. Wiley (Inter- 
science), New York (1962). 

7. H. P. KELLY, Phys. Rev. 131, 684 (1963). An application of the Goldstone technique to an 
open shell case (oxygen atom, “P) has been completed recently (private communications 
from H. P. Kelly). 

8. R. K. NESBET, in “Advances in Chemical Physics” (I. Prigogine, ed.), Vol. VII. Wiley (In- 
terscience), New York (1964). 

9. 0. SINAN~GLU, in “Advances in Chemical Physics” (I. Prigogine, ed.), Vol. VI. Wiley (In- 
terscience), New York (1963). 

10. C. C. J. ROOTHAAN, Rev. Modern Phys. 23, 69 (1951). 

11. R. S. MULLIKEN and C. C. J. ROOTHAAN, Proc. Natl. Acad. Sci. U.S. 45, 394 (1959). 

12. See for example C. L. PEKERIS, Phys. Rev. 112, 1649 (1958); W. KOLOS and C. C. J. Roo- 
THAAN, Rev. Mod. Phys 32, 205 (1960); E. CLEMENTI, “Tables of Atomic Functions,” IBM. 

Res. Develop. 9, 2 (1965). A systematic effort in diatomic and linear polyatomic molecules 
is now in progress at the University of Chicago (LMSS) and at the San Jose IBM Research 
Laboratory. 

13. C. A. COULSON, Rev. Mod. Phys. 32, 169 (1960); the entire volume is relevant to molecular 
computations and is a useful general reference. 

14. C. C. J. ROOTHAAN and P. S. BAGUS, in “Methods in Computational Physics” (Berni Adler 
and Sidney Fernbach, eds.), Vol. I. Academic Press, New York (1963). 

15. S. F. BOYS, Proc. Roy. Sot. (London), Ser. A 200, 542 (1950); 258, 402 (1960). Note: these 
papers are of high importance, since the use of Gaussian functions in quantum chemistry 
originated with the work of S. F. Boys. 

16. D. R. HARTREE, “The Calculation of Atomic Structures” Wiley, New York (1937). 

17. I. SHAWT, “Methods in Computational Physics” (Bernie Adler and Sidney Fembach, eds.), 
Vol. II. Academic Press, New York (1963). 

18. M. C. HARRISON, J. Chem. Phys. 41, 499 (1964). 



244 CLEMENT1 AND DAVIS 

19. J. P. WRIGHT, “Solid State and Molecular Theory Group.” M.I.T. Technical Report (1963). 

20. F. E. HARRIS, Rev. Mod. Phys. 35, 558 (1963). 

21. M. KRAUSS, J. Res. Nat/. BUY. Std. 68B, 35 (1964). 

22. S. HUZINACA, unpublished results; private communications. 

23. E. CLEMENTI, IBM. Res. Develop. 9, 2 (1965) and reference given there. 

24. S. HUZINAGA, J. Chem. Phys. 42, 1293 (1965). 

25. D. R. DAVIS and E. CLEMENTI, IBM Tech. Rep. (in press). This report gives a detailed anal- 
ysis of the program and the FORTRAN listing; the listing represent the present (December 
(1965) program version. Copies may be secured by request to one of us (E. Clementi). 

26. E. CLEMENTI and D. R. DAVIS, J. Chem. Phys. 45, 2593 (1966). 

27. Since this paper was submitted (January 1966), other computations have been performed, 
namely benzene (C,H,), pyridine (CSNHS). pyrazine (C4N2H4), fluorobenzene (C,H,F), 
the o-, m-, p-difluorobenzenes (C,H,F,) and an extensive investigation of the NH3 + HCI 
system. The use of the program brought about the desirability to include modifications and 
extension. A second version of the program has been written by A. Veillard and E. Clementi 
and a computational time-saving of about 20 percent has been obtained. Version one of the 
program is available from the Quantum Chemistry Exchange Program (Q.C.P.E.) at the 
University of Indiana, Bloomington, Indiana. Version 2 of the program will be shortly 
submitted to Q.C.P.E. A general multiconfiguration SCF program is now in the coding 
process. 


